
Java Basics
Everything we learned in Java

By: Rashedul Khan
Website: https://it.roti.io

https://it.roti.io

Variable
Stores data

Holds information

Variables
[data_type] [name] = [data]

• Variables are named data in the sense that a
variable stores data with a given name and type.

• [data] —> is a value such a whole number,
fractional number, a letter, some words, or an object.

• [name] —> A descriptive name for the information
that will be stored in this variable.

• [data_type] = The type of the data such as int,
double, String, char, boolean.

Variable [type]
[type] Data Example

int Whole Number 55

double Decimal Number 55.6

char Single Letter ‘A’

String Sequence of letters “Hello World”

boolean true or false TRUE

Variable Examples
[data_type] [name] = [data]

Statement [data_type] [name] [data]

int a = 5; int a 5

double b = 5.7; double b 5.7

String c = “Hi” String c “Hi”

boolean d = true boolean d TRUE

Primitive Data Types
Types Description Size

boolean True or false 1 bit

byte Tiny number 8 bits

char Letter 16 bits

short Small number 16 bits

int Number 32 bits

long Long number 64 bits

float Decimal point Number 32 bits

double High precision decimal
point number 64 bits

Method

Does something

Performs some action/job

<Code>Input Output

Methods on a high-level

double calculateTax(double price)
{ <Code>}

Output Name Input

<Code>Input Output

Method Call

add(5,7);

Output of add method is stored in a variable
called result.

int result = add(5,7);

Methods
[output_type] [name]([input]) {<Code>}
• Methods are named blocks of code. It performs a job

by taking some(or no) input and executing statements
to produce an output(or no output).

• For example, a method that’s supposed to add two
numbers. Its job is to add two numbers that were
passed in as arguments/input and produce an output
that is the sum of those two inputs. The statement
needed to accomplish this job is just the plus(+)
operator

• int add(int a, int b) { return a + b; }

Method Format
[output_type] [name]([input]) {<Code>}
• [output_type] —> return data type such as int, double,

String. Same as variable data types.

• [name] —> A descriptive name for the job/task that
will be performed by the method

• [input] —> Data needed to perform the job/task. For
example, in order to add two numbers the method
needs to know those two numbers.

• <code> —> Sequence of statements to accomplish
the job/task.

Method Examples
[output_type] [name]([input]) { <Code> }

[output_type] [name] [input] <Code>

Int add(int a, int b)
{ return a + b;} int add int a, int b return a +b;

void greet()
{ sout(“Hello!”); } void = none greet none sout(“Hello!”)

boolean isRich()
{ return true; } boolean isRich none return true;

Class

Class

A blueprint for creating real objects.
In other words, what defines a object.

Class/Blueprint Object/House

Just like real life

Blueprint Object

Method
Performs a job

Variable
Stores some data

Class

Objects
Are created from a class

Has things = Variables
Does things = Methods

Static
Associated to a class,

not to an instance

Access static

Create the following
class

BankAccount Blueprint
• Has balance

• Can take Deposits

• Can Show balance

• Can Withdraw

• Associated to a person

Conditionals

Conditionals

Decision making logic.

If this is true then do this…

Conditionals

• If ([condition]) { // Execute this block }

• Else if ([condition]) { // Execute this block }

• Else if ([condition]) { // Execute this block }

• Else { // Execute this block }

[condition]

• The condition must be boolean

• Operators that returns boolean are listed on the
next slide

[condition] - Operators
Condition TRUE if…

If (a == b) A equals to b

If (a != b) A is NOT equal to b

If (a < b) A is less than b

If (a > b) A is greater than b

If (a <= b) A is less than or equal to b

If (a >= b) A is greater than or equal to b

Arrays

Arrays

Stores more than one data

Holds multiple information

However…
• Fixed size. Meaning the size of the array cannot

be changed once created.

• Must know size of array before creating one.

• All elements must have the same type. Meaning
an array of integers can store only integers. Not
any other types such as String or double.

• If you want to store integers and Strings you must
create two separate arrays.

Creating an Array

• 2 ways to create an Array

• Array with values

• Empty array

Creating Array with values

• int[] numbers = { 1, 2, 3, 4, 5 };

• double[] fractions = { 1.2, 2.3, 3.5, 4.8, 5.5 };

• String[] menu = { “Tea”, “Coffee”, “Cookies” };

Creating Empty Array

• int[] numbers = new int[5];

• double[] fractions = new double[5];

• String[] menu = new String[3];

Accessing Array Elements

• 0th element —> menu[0] —> “Tea”

• 1st element —> menu[1] —> “Coffee”

• 2nd element —> menu[2] —> “Cookies”

• 3rd element —> menu[3] —> Error

String[] menu = { “Tea”, “Coffee”, “Cookies” };

Putting data in Arrays
String[] menu = { “Tea”, “Coffee”, “Cookies” };

• Overwrite 0th element —> menu[0] = “Chai”

• Overwrite 1st element —> menu[1] = “Thai Coffee”

• Overwrite 2nd element —> menu[2] = “Biscuit”

• Overwrite 3rd element —> menu[3] = “Cake” —> Error

Loops

Loops

• Performs a task numerous times.

• Repeats a block of code until the condition
becomes false or explicitly break out of loop.

• In other words, it will repeat as long as condition
is true.

Types of Loop

• While loop

• For loop

• For Each

While Loop

While Loop - Never Ending

// Never-ending loop or infinite loop
while (true) { // Condition is always true
 // ... Some statements
}

While Loop - Controlled

int counter = 1; // Control variable initialized

// Condition for loop continuation
while (counter <= 10) {
 System.out.println(counter);
 counter++; // Increment the control variable
}

For Loop

For Loop

int counter;
for(counter = 1; counter <= 10; counter++){
 //... Statements
}

For Each
public static void main(String[] args) {

 int[] arr = { 1, 2, 3, 4, 5 };

 for (int i: arr) {
 System.out.println(i);
 }

}

1
2
3
4
5

